If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+4q-20=0
a = 1; b = 4; c = -20;
Δ = b2-4ac
Δ = 42-4·1·(-20)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{6}}{2*1}=\frac{-4-4\sqrt{6}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{6}}{2*1}=\frac{-4+4\sqrt{6}}{2} $
| 7(x+7)=16(x-1) | | 2²+a=20 | | x^2+28x-29=0 | | 5x+1=-3x+5 | | 1/3x-5=x | | F(x)=2.5x^2+10x-15 | | -0.3(x-7)=14.1 | | 9x-4=2(7+4x)+7 | | 12.3=-0.5(x+9) | | x^2=8x+5 | | -8=-4(x+3)+4 | | 30/x=15/18 | | 1=-11+9(x+6) | | 4(x+6)-7.1=4(x-3) | | 8/5=6/x | | 5/x+3=5/3x+19/6 | | |7x-3x|+2=-18 | | 15/18=x3 | | (1/3)x+9=15 | | -5(x-2)=-10(x-3) | | 31x+3=180 | | 0.7(10x+14)=4.1(0.2x+5) | | 7p+2-3p=2p-3=2p | | 800=100+20x | | X^4+17x^2+57=x^2-6 | | 8(x+4)=24x | | (6x-9)=118 | | 3n-3=5n-3-2n | | 5.4p+13.1=-2.6p+3,5 | | –45=5x | | s–16=13 | | 8(x+4)+x=24x |